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ABSTRACT 

We prove that  a tiling of the plane by topological disks is locally finite at 

most boundary points of tiles, confirming a conjecture by Valette. This 

comes by way of a much more general theorem on tilings of topological 

vector spaces. We also investigate a question raised by Klee as to whether 

or not there is a tiling of separable Hilbert space by bounded convex tiles. 

We present evidence to support  the conjecture tha t  the answer is negative. 

0. Introduction 

A t i l ing  of a topological vector space X is a covering of X by sets (called tiles) 

which are the closures of their pairwise-disjoint interiors. This paper is a result of 

investigations into two questions concerning tilings. The first, raised by Valette 

in [22], asks whether a tiling of the plane whose tiles are topological disks can 

have bad behavior at every boundary point of every tile. Specifically, is it possible 

that every open set which contains a boundary point of a tile intersects infinitely 

many tiles? Valette conjectured that no such tiling exists; in this paper we will 

prove his conjecture correct. 

The second question which we investigate was raised by Klee in [12]. It 

asks whether separable (infinite-dimensional) Hilbert space admits any tiling by 

bounded convex sets. While this difficult question remains for the time unset- 

tled, we will discuss evidence to support the following conjecture: no infinite- 

dimensional reflexive separable Banach space admits a tiling by bounded convex 

sets. 
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The following definitions will be basic to our discussion. For any covering A 

of a space X we define the set of frontier points of A to be the union of the 

boundaries of the members of A. This set is denoted by the symbol F(,4). In 

the case of a tiling the frontier points are especially interesting. Indeed, since 

the interiors of the tiles in a tiling ~r are pairwise-disjoint, all of the interesting 

behavior of T is concentrated at its frontier points. Note that F(7.) is dosed, 

since a point interior to a tile is clearly not an accumulation point of F(T). Some 

important subsets of F(T) are described below. 

A singular point of a tiling T is a (frontier) point at which T is not locally 

finite (that is, a point every neighborhood of which intersects infinitely many 

tiles in T). The collection of all singular points of T is denoted by S(T). Note 

that, like F(7.), the set S(7.) is always closed. Note also that Valette's question 

may now be stated in the following form: is there a tiling 7" of •2 by topological 

disks such that F(7") = S(7")? In Section 1 of this paper we will answer this 

question by proving that under fairly weak assumptions on the tiling 7" and the 

space X the set S(7") is nowhere dense in the set F(7"). 

Even if one is concerned only with tilings of finite-dimensional spaces, singular 

points arise in many interesting and natural examples (see [9], pp. 114-116). For 

instance, any tiling of R d by bounded convex sets, at least one of which is not 

a polyhedron, must have singular points (see Theorem 5.1 of [13]). In infinite- 

dimensional settings, singular points are often unavoidable. Corson [5] proved 

that if X is a Banach space with an infinite-dimensional reflexive subspace then 

there is no locally finite cover of X by bounded convex sets. Thus, in particular, 

there can be no tiling 7" of such a space by bounded and closed convex sets 

such that S(7") = @. In fact, we will show in Section 2 that if X is a Banach 

space with an infinite-dimensional separable reflexive dosed subspace, and if 7" 

is a tiling of X by convex sets, then any bounded tile in 7" contains uncountably 

many singular points of T. See [1,2,3,4,8,17,18,22,23] for other results relating to 

singular points of tilings. 

One interesting subset of S(7") is I(7.), the set of imprope r  points of 7". We 

say that x E F(7.) is improper  if and only if x belongs to only one tile (see 

[4,S,lS]). 
A frontier point x of 7. is said to be p ro tec ted  if and only if it is interior to 

the union of the tiles that contain it. The set of protected frontier points of 7" is 

denoted by P(7"). (We have of course, P(7") N I(7") = 0.) One subset of P(7") 
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is P2(T), the collection of protected frontier points common to exactly two tiles. 

We call these points 2-protected.  

Finally, a point z E F(T) is said to be resolvable if and only if for each 

neighborhood U of z there is a neighborhood V C U of x such that T N V is 

connected for each tile T E T. The set of resolvable frontier points of T is 

denoted by R(T). 

Throughout this paper we will use the symbols cl (A), int (A), and bdy (A) to 

denote the closure, interior, and boundary of the set A. If A is a collection of 

subsets of the space X then U A and ["1A will denote, respectively, the union 

and intersection of the members of A. 

1. The behavior of  a tiling at a frontier  point 

In this section we investigate Valette's conjecture and broaden the question to 

the more general problem "how poorly may a tiling behave at how many of 

its frontier points?" Perhaps not surprisingly, the answer will depend on what 

additional assumptions are placed on the tiling. Our finite imaginations allow 

us only to "picture" filings which are somewhat well-behaved at most of their 

frontier points. For example, we imagine most frontier points to be both 2- 

protected and resolvable. Even in the plane, however, topological realities go far 

beyond our intuition when no constraints are present. The good behavior we 

expect is not at all guaranteed, as the following example shows. 

1.1 Example: As noted by Griinbaum and Shephard ([9], p. 55), a construction 

similar to that of the "Lakes of Wada" (see Yoneyama's paper [24], pp. 60-62, 

as well as papers by Knaster [14] and Kuratowski [15]) can produce a tiling of 

JR 2 (by any finite number or an infinity of tiles) such that every frontier point is 

common to a/l tiles. The tiles, of course, are wildly shaped; but topologically they 

are the closures of sets homeomorphic to the open unit disk. Here, we describe a 

tiling 7" of the real number line by infinitely many tiles such that the boundary 

of each tile is F(T) (thus F(T) = S(T)). This extends to any space by taking 

the product of these tiles with a hyperplane. 

Let 2"1 be the collection of intervals 

{[1/3, 2/3] + k I k E Z}, 

2"2 the collection 

{[1/9,2/9] + k I k E Z} U {[7/9,8/9] + k [k E ~},  
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and in general, let 27,, be the collection of "middle thirds" of the components of 

Now let 
T1 = c l (~ ' l  U I 2  U I 4  U Z7 U Z l l  U "" "), 
T2 : cl (.-~3 U .~5 U ..T 8 U .~"12 U . . . ) ,  
T3 = c l ( : Z ' 6 u Z ~ u Z ~ 3 u . . . ) ,  

and so on. With T = {T~,T2,T3,...} it is clear that F(T) is the union of 

translates of the standard Cantor set and that every frontier point is common to 

aU tiles in T. I 

The above example shows that it is possible to have bad behavior at all frontier 

points of a tiling if the shape and arrangement of the tiles is unrestricted. The 

question thus becomes "what conditions must be established in order to guarantee 

good behavior at most frontier points of a tiling?" 

We will be concerned with filings that possess properties defined previously in 

[18]. We give the definitions here for completeness. Two filings T and T'  of the 

same space X are said to be topologically equivalent if and only if there is a 

homeomorphism h : X ~ X such that if T E T then h(T) E T' (thus also if 

T' E T'  then h-l(T ') E 7"). A subset A of a topological vector space X is called 

a topological body  if and only if there is a homeomorphism g : X ~ X such 

that g(A) is a closed convex set with nonempty interior. (Note that we do not 

require that g(A) be bounded). We say that a tiling 7" of X possesses property 

P l  

P2 

P3 

P4 

if and only if T is topologically equivalent to a tiling by convex sets; 

if and only if each tile in T is a topological body; 

if and only if for each T E T, z E bdy (T), and neighborhood U of x, 

there is an open neighborhood V C U of z such that V \ bdy (T) consists 

of exactly two connected components; 

if and only if for each proper subcollection S C T and each pair of 

distinct tiles T1 and T2 in S, the set T1 N T2 N bdy (U $) is nowhere dense 

in bdy (U s).  

The Sch6nffies Theorem states that any homeomorphism between a simple 

closed curve in JR 2 and the unit circle may be extended to a homeomorphism 



Vol. 81, 1993 TILINGS 133 

of/~2 onto itself. It follows that any tiling of/~2 by topological disks possesses 

property P2. In Theorem 2.2 of [18] it is proved that 

P1 ==~ P2 ==~ P3 ==~ P4.  

We will establish Valette's conjecture below by proving that if X is a suitably 

nice space and T is a tiling of X possessing property P3 then the set S(T)  of 

singular points of T is nowhere dense in the set F(7") of all frontier points of 

7" (in fact, almost all frontier points are both resolvable and 2-protected). Note 

that this improves considerably on Valette's original conjecture. 

Before presenting the main theorems, we need a lemma which codifies a tech- 

nique of Klee and Tricot from [13]. 

1.2 LEMMA: Let X be a topological space such that every dosed subset of X is 

a Baire space in the subspace topology. Let ,4 be a countable dosed covering of 

X and for each subset R C X det~ne M(R; A) to be the set of MI z E R for which 

there is a neighborhood U of x and a member A E ,4 with U n R c A. (Thus 

M(R; ,4) is the set of all points of R at which R is "locally contained in a single 

member of A.") Then for each R the set M(R; .A) is dense and (relatively) open 

inR .  

Proof." It follows immediately from the definition of M(R; A) that M(R; A) is 

open in R. Now suppose (to reach a contradiction) that there is an open set U 

such that 

0 ~ U t3R  C R \ M ( R ; A ) .  

Then for each open V C U and A E .4 with A n V N R ~ 0 we would have 

V A ( R \ A ) ~ O .  

Since R n A is (relatively) closed in R this means that R A A n U is nowhere dense 

in RA U. Thus for each A E .4, cl(R) n AN U is nowhere dense in cl(R) n U. 

But cl (R) n U is a Baire space and 

U cl(R)nAnU D cl(R)nU. 
AEJi 

This is a contradiction since .A is countable. We conclude that no such open set 

U may exist, so M(R; A) is dense in A. I 

If we let R = F(A)  in Lemma we obtain the following fact. 
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1.3 COROLLARY: Let X be a topological space every dosed subset of which is 

a Ba/re space in the subspace topology, and let A be a countable dosed covering 

of X. Then given an open set U C X intersecting the set F(.A) of frontier points 

of A, there is an open set V C U and a member A E A such that 

0 # VAF(.A) C A. 

We now consider a countable tiling T of a space X every dosed subset of 

which is a Baire space. We will show in Theorems 1.4 and 1.6 that if T possesses 

property P3 then P2(T) n R(T)  is dense in F(T),  and that a weaker condition 

guarantees that Pa(T) is dense in F(T).  The proofs are applications of Corollary 

1.3. 

1.4 THEOREM: Let X be a topological vector space every dosed subset of which 

is a BaJre space in the subspace topology (in particular, X may be any Banach 

space). Let T be a countable tiling of X possessing property P3. Then the set 

P2(T) n R(T)  of resolvable 2-protected frontier points is dense and (relatively) 

open in the set F(T)  of all frontier points of T. 

Proof." If follows easily from the definition of property Ps that P2(T) C R(T) ,  

and the relative openness of P2 (T)  is immediate from its definition. It remains 

only to show that P2(T) O R(T)  is dense in F(T). Let U be an open set inter- 

secting F(T).  We will show that U contains points of the set P2(T) O R(T). 

By Corollary 1.3 there is an open set V C U and a tile T such that 

0 # V n F(T) c T.  

Since T possesses property P3 there must be an open set W C V such that 

W \ bdy (T), which is W \ F(T),  consists of exactly two connected components. 

Each of these components must lie in the interior of a tile, and it is clearly 

impossible for both components to be subsets of int (T). It is now easy to see 

that each point of W n F(T) is a point of P2(T) n R(T). I 

Since no 2-protected frontier point is singular, we have 

1.5  COROLLARY: I f  X and 7" are as in Theorem 1.4 then the set S(T)  of singular 

points o f t  is nowhere dense in F( T). I 
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Now every improper frontier point is singular, so if 7" and X meet the con- 

ditions of Theorem 1.4 then it follows from Corollary 1.5 that I(7-) is nowhere 

dense in F(7-). As the next theorem shows, to get the density of P2(7-) (instead 

of P2(7-) n R(7-)) in F(7-) it is enough to have property P, (weaker than P3) 
and the assumption that F(7-) \ I(7-) is of second category in F(7-) at each point 

of F(T). It will then follow from Corollary 1.7 that 1(7") is actually, as before, 

nowhere dense in F(T). 

1.6 THEOREM: Let X be a topological vector space every closed subset of 

which is a Baire space in the subspace topology. Let 7- be a countable tiling of 

X possessing property P4 such that F(T) \ I(7-) is or second category in F(T) 

at each point ofF(7-). Then P2(7-) is dense and (relatively) open in F(7-). 

Proof: As before, we need only show density since the relative openness is 

immediate from the definition. Let U be an open set in X intersecting F(T). 
We will show that U contains points of P2(T). Using Corollary we may find an 

open set V C U and a tile To E 7" such that 

0 # V n F(7-) c cl (V) n F(7-) C To. 

Now cl (V) N F(7-) is closed, and thus is a Baire space by assumption. Fur- 

thermore, 

(el (V) n F(7-)) \ I(7-) C U T n To n cl (V) .  

Tr (To I 

Since 7" is countable and the set on the above left is of second category in F(7-), 
there is a tile T1 E 7" \ {To } such that To N T1 is of second category in cl (V)NF(7-). 

But To n T1 is closed, so there is a connected open set W C V such that 

0 # WAF(7-) c ToOT~ . 

Assume (to reach a contradiction) that W contains points not in To UT1. Since 

W is connected this forces 

0 # W n bdy(T0 uT1) C W A F ( T )  c To AT1 . 

This contradicts property P4 (with S = {To, T1 }). Thus 

W C To U T~ , 

so every point of W n F(T) is a point of P2 (7-), which completes the proof. 
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1.7 COROLLARY: Xf X and T a r e  a s  in Theorem 1.6 then S(T) (and thus I(T)) 

is nowhere dense in F(T). l 

We mention here one more theorem concerning 2-protected frontier points of a 

tiling. The filings described in Example 1.1 are "pathological" in the sense that 

lines intersect the tiles in unexpected ways. In particular, there are lines which 

contain no segment of the boundary of a tile and yet still contain uncountably 

many frontier points. If a tiling T is tame enough to intersect lines in a not-too- 

wild manner, it can be shown that P2(T) is dense and relatively open in F(T). 

This is the content of the following theorem. The proof is too long to include 

here, but may be found in [19]. We will say that a line L sections a set A C X 

if L N A is the closure in L of L N int (A), and that L sections the tiling T of X 

if L sections both T and X \ int (T) for every tile T E T. 

1.8 THEOREM: Let X be a separable normed space every dosed subspace of 

which is a Ba/re space in the subset topology. Let T be a tiling of X such that 

any line that sections T contadns at most countably many points of F(T). Then 

P2(T) is dense and (relatively) open in F(T) (and so, as before, S(T) is nowhere 

dense in F(T)). I 

It is clear that category arguments are the mainstay of the above results. 

So, while the theorems are more than enough to answer the question posed by 

Valette, they are restricted to countable tilings of Baire spaces. This author 

admits ignorance of to what degree similar results might hold for tilings of higher 

cardinality or spaces of poorer structure. The setting for the next section of 

this paper is a separable Banach space. Here, topology enforces countability of 

tilings, so the general results we have thus far developed are applicable. 

2. Til ings of  Banach spaces by bounded convex sets 

In this section we address the question "does any infinite-dimensional reflexive 

separable Banach space admit a tiling by bounded convex sets?" (Tilings by con- 

vex sets will hereafter be called convex tilings and tilings by bounded convex 

sets will hereafter be called bounded  convex tilings.) We will give some geo- 

metric arguments to support the conjecture that the answer is negative. First, 

though, we discuss why the question is interesting. 
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Finite-dimensional Hilbert spaces are nothing more than the familiar Euclidean 

spaces JR d with the t2 norm. These easily admit bounded convex filings (for ex- 

ample, by d-cubes). The space H = t2(R0) presents, in many ways, the best gen- 

eralization of the properties of these Euclidean spaces to an infinite-dimensional 

setting. It is complete, separable, and has an inner product. It seems natural, 

from the standpoint of studying filings, to ask if the property of admitting nice 

filings also extends to H. 

The question is made more interesting by what happens at the other end of the 

cardinality spectrum. In a very clever construction, Klee has proved (see [11] and 

[12]) that  Hilbert spaces on very large cardinals admit bounded convex filings. 

Specifically, if n is an infinite cardinal for which n R~ = n then the Hilbert space 

t2(n) admits such tilings. The intermediate case of separable Hilbert space H is 

yet unsettled and apparently very dii~cult! 

Known facts and examples concerning convex tilings of Banach spaces are 

few, but some of what is known is very interesting. A recent paper by Fonf [8] 

establishes that  if the separable Banach space X admits a convex tiling TI  such 

that TI  contains a bounded tile and I (TI)  = 0 then X admits a bounded convex 

tiling T2 which is locally finite (that is, S(T2) = 0). As mentioned previously, 

Corson proved this cannot occur when X has an infinite-dimensional reflexive 

subspace. 

The key to our analysis in this paper is the following theorem of Lindenstranss 

and Phelps [16]: i f X  is an intlnite-dimensional reflexive Banach space and C C X 

is a bounded and closed convex set with nonemp~y interior, then the set ext (C) 

of extreme points of C is uncountable. (Recall that an e x t r e m e  po in t  of a 

convex set C is a point z 6 C such that if z = Az + (1 - A)V with 0 < A < 1 

then either z ~t C or V ~t C.) Extensions of this theorem are given in [6] and [10]. 

We will show that,  while each tile in a hypothesized bounded convex tiling Y of 

X has uncountahly many extreme points, only countably many of these may be 

protected. Since 

F(T)  \ P(T)  C S(T), 

this suggests an abundance of singular points; possibly an over-abundance in 

light of our results from Section 1. 

Our principal lemmas are stated in terms of coverings, so we will need to 

update some definitions. Let C be a covering of a space X and, for each z 6 X, 

let C(z) denote the collection of sets in C which contain z. Then, as before, z is 
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protected if and only if x is interior to UC(x), and the set of all such points 

will be denoted by P(C). There is a stronger notion appropriate for coverings: 

the point y is we l l -p ro tec ted  if and only if y is interior to the set 

The set of all such points will be denoted by WP(C). 

If Y is a flat (translate of a linear subspace) in the space X and 7" is a tiling 

of X, we have a covering (but not  necessarily a tiling) 7"v of Y given by 

T y  = {T N Y I T �9 T} 

It is easy to see that P(T) n Y C W P ( T v ) .  

We now give a crucial but simple lemma about protected extreme points in a 

covering by convex sets. 

2.1 LEMMA: Suppose C is a convex covering of a topological vector space X and 

Co �9 C is such that C h in t  (C0) = 0 t'or each C �9 C \  {Co}. Then nO(x)  = {z} 

/'or each x �9 ext (Co) n P(C). 

Proof'. Suppose (to reach a contradiction) that there is some x �9 ext (Co)nP(C) 
and some y r z such that y �9 n c ( z ) .  Since z �9 ext (C0) there is a point w 

colinear with z and y such that 

[~, ~[ n C o =  0. 

Choose z �9 int (Co). Let T1 and T2 denote the relative interiors of the triangular 

disks whose vertex sets are, respectively, {x, z, w} and {z, y, z}. Clearly 

T2 C int (Co). 

Now x �9 P(C), so T1 must meet some C �9 C(x) \ (Co}. By assumption, y �9 C. 

But the convexity of C then forces 

C n int(C0) ~ CnT2 r 0, 

a contradiction (see Figure 1). his proves the lemma. | 
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Fig. 1. 

The following lemma provides the sought after limitation on the cardinality of 

protected extreme points. 

2.2 LEMMA: Let C be a convex convering of a second cotmtable topological 

vector space X. Let Co �9 C be such that C N int (Co) = 0 for each C �9 C \ {Co}. 

Then the set WP(C)Next (Co) of well-protected extreme points of Co is at most 

countable, 

Proos Let B be a countable base for the topology of X. We will define a 

one-to-one map 

wP(c) n ext (Co) , t3 

which will complete the proof. 

Consider a point x e WP(C) M ext (Co). Given y �9 (WP(C) Next (Co)) \ {x} 

there is by Lemma 2.1 some Cy �9 C(y) \ C(z). Thus 

(WP(C) Next (Co)) \ {x} C U ( c  \ c(z)). 

Since x �9 WP(C) there is a neighborhood U~ �9 B of z with 

~ c x \ U(c c(x)). 

Then Ux n (WP(C) Next (Co)) = {x}, so 

X |  ' '~' U~g 
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is the desired map. I 

As mentioned previously, Corson [5] proved that if X is a Banach space with 

an infinite-dimensional reflexive subspace then there is no locally finite covering 

of X by bounded convex sets. The following consequence of Lemma 2.2 may be 

thought of as a sharpening of Corson's theorem applied to tilings. 

2.3 THEOREM: Let 7" be a convex tiling of the Banach space X and let Y C X 

be an infinite-dimensional reflexive separable closed subspace. If  Co E 7" is 

bounded and x E int (C0) then the flat Y + x contains uncountably many points 

o/'bdy (C0) \ P(7"). 

Proos By the theorem of Lindenstrauss and Phelps the set (Y + x) M Co has 

uncountably many extreme points. Lemma 2.2 applies with X = Y + x and 

C = 7"v+z, so only countably many of these extreme points are well-protected 

by 7"v+z, which implies that only countably many are protected by 7". I 

This theorem implies that if X is a Banach space with an infinite-dimensional 

reflexive separable subspace and 7" is any tiling of X by convex sets, then any 

bounded tile in T contains uncountably many unprotected (thus singular) points 

relative to 7-. In fact, each point of a bounded tile Co is a weak condensation point 

of S(7-) f'l Co (every weak neighborhood of a point in Co contains uncountably 

many points of S(7-)f3 Co). The structure of the bounded convex tilings produced 

by Klee's construction must be very wild indeed! 

Similar results for the separable case have been obtained independently by 

Fonf [7]. Indeed, he has proved that if X is separable and Co E 7- is bounded, 

then S(7") M Co is weakly dense in Co and cannot be covered by countably many 

weakly closed and nowhere norm-dense subsets. 

Theorem 2.3 above gives the following corollary in the separable case. 

2.4 COROLLARY: Let 7" be a convex tiling of an inflnite-dirnensionai reflex- 

ive separable Banach space X.  If  Co E 7" is bounded and F is any dosed 

int~nite-dimensional flat intersecting int (Co) then ext ( F N Co) contains uncount- 

ably many points of S(7") (in fact, uncountably many points of F(7") \ P(7")). 

Proof: This follows immediately from the above theorem since any closed sub- 

space in X is automatically reflexive (see p. 105 of [20]). I 
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Fig. 2. 

In closing .we discuss why this suggests an obstacle to the existence of bounded 

convex tilings of such spaces. Our first impulse might be to suspect that it is 

impossible for the singular points to be so prevalent in every tile. However, we 

know from Theorem 2.3 applied to Klee's example that such behavior is possible, 

at least in the nonseparable case. Easier to visualize is the example due to A.H. 

Stone (see [21]) depicted in Figure 2. Here, the plane is partitioned into squares in 

the familiar checkerboard arrangement, then each square is subdivided as shown. 

The result is a bounded convex tiling in which each tile contains uncountably 
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many singular points. In fact, every extreme point of every tile is singular! 

However, our result describes a phenomenon that this two-dimensional example 

cannot possibly illustrate. If X, T,  and Co are as stated then the boundary of Co 

is saturated with singular points in the following sense: any glance from inside 

Co which takes in infinitely many dimensions will see uncountably many singular 

points in bdy (Co). The author does not know if this will lead to a violation of 

the conditions derived in Section 1 on the scarcity of singular points, but it seems 

to point in that direction. 

Note that Theorem 2.3 required only one tile to be bounded. In fact, variations 

on this approach suggest the possibility of the following being true: i f  T is a 

convex tiling of an infinite-dimensional reflexive separable Banach space then 

every tile in T is unbounded. The author is not aware of any examples-to 

contradict this possibility. 
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